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Interferometry
Milind Diwan
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* What are neutrinos ! Why study them ?
e |nterference in neutrino beams.

* Neutrino Properties from recent
experiments with natural and man-made

Sources

* New generation experiment

slides from many experiments BROOKHFAEN

. NATIONAL LABORATORY
esp: SK, SNO, Kamland, Minos

Will not talk about Daya Bay and LENS

Friday, June 17, 2011



What is the scientific interest in neutrinos ?

matter constituents

FERMIONS spin = 172, 312, 512, ... *~15 yrs ago all neutrino
Leptons pin -1 masses were thought to be 0
o clectrio| | riavr | 22O | Electric and all neutrino flavors
charge Gev/c2 | charge distinct.
Y, lohtest  0-0.13)x10° 0 [ W) w 0.002 213 - - -
M- v *\With new discoveries a
C : 1" -1 n i -1/ . g
S ASSRIIIRS 10.0005 g im 5 10.005 ° | distinct, unexpected pattern
1y midde +(0.009-0.13)x10°| 0 |l (@) cham 1.3 3| has emerged.
I,L muon 0.106 1 @ strange 0.1 -1/3
Y,y pecvest | (0.04-0.14)x10-°| 0 &) ©e 173 2/3
L'z; tau 1.777 -1 @ bottom 4.2 —1/3J

eScience of neutrinos is has deep connections to understanding of matter,
cosmology, and astrophysics.

e Existence of neutrino mass itself is physics beyond the standard model
because of the left/right properties of the neutrino as well as the smallness of
the mass. It implies a new mechanism for mass generation in which
neutrinos are their own anti-particles. 5
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Basic Interactions of neutrinos

All the particles of a given kind are identical.
All are absolutely identical.

do not have birthmarks.

But there are 3 kinds, or flavors, of electron-like

particles:
. Associated

Particle Symbol Mass Neutrino

Electron e 1 Ve

Muon u 200 Vi

Tau T 3500 V.
Charged Neutrinos or
leptons neutral leptons

Neutrinos are always produced or destroyed in association with their
charged partner with the Weak interaction. 3
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The neutrino and charged lepton always have the
same flavor.

LL T

Source

Creation

Detection When a neutrino collides with an atom 1n a neutrino
detector, it creates a charged lepton.

These are called “Charged ~ Lhe charged lepton always has the same flavor as
current” interactions in the neutrino.

which neutrino changes
electrical charge. T

There are also “neutral = _-/
current” interactions in
which a neutrino has an Detector

elastic interaction that

leaves observable energy
in detector. Not
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Neutrinos in Cosmology

® The most abundant particle The Particle Universe
is the photon: ~400/cc

® The most abundant matter
particle is the neutrino at
56/cc of each type.

® CNB (1.95K) is a relic of
the big bang similar to the
CMB (2.725K). Neutrinos
decoupled at 2 sec while

photons decoupled at
~400,000 yrs.

number / cm®

07 + neutrons

I dark matter

—a —_— — —_— —a —A —_— —A —A —A —A —A —A
o O o o o o o o () Q o o (=)
) ) 1 [} | i ] &0 - . o L
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Current picture of neutrino masses points to another
mass generation mechanism.
fermion masses

direct mass limit d*l‘ SHE b.
oscillation hint: 0.05 eV
l U+e ce te
< V—® @V, 8Vg ee Le Te
= 3 @D ~ = ) —
@ ® < D @ ® @
= < = < < <

Mass is a coupling of the left and right
components of the Fermion field,
unless it is a neutral fermion in which case mass
can couple fields of same handedness.
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Why Mass could imply Lepton
number violation !

Particle Anti-particle
left (6 V)L (e V)L
Not in SM
/ \
Right €R er UR

® Standard model has only left handed leptons in
isopin states. But if neutrino has mass it can
become right handed.

e |f v;, = v (Majorana) then neutrinos are their
own antiparticles and can annihilate themselves thus
destroying L.
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If neutrinos have mass; the massive states need not
be the same as the Weak interaction states.

Vg cos(f)  sin(#) 2
This will lead — . )
to interference o’ —sin(f) - cos(0) V2
effects
Va(t) = cos(0)ry(t) + sin(0)vo(t)
Pv, — 1) = | <wplra(t) > |2

= sin?(f) cos?(0)|e"E2t — ¢—iEnt|2
Sufficient to understand most of the physics:

o 1.27((m3 — m?)/eV?)(L/km)
(E/GeV)

P(v, — 1) = sin® 26 sin
1 b.

5 1.27(Am?/eV?)(L /km)
(E/GeV)

P(vg — Vq) = 1 — sin“ 26 sin

Oscillation nodes at 7/2,37/2.57/2,... (7/2): Am? = 0.0025¢V2,

E =1GeV. L = 494km .
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Picture with O = 45 deg

I
I
|
Born v, |—> Pure

e

\‘/

A 11 Anpiqeqoid

Distance Traveled —»

Pure

Vi I—» ure v

Astonishingly this is reality




Oscillations is a new

interferometry.
AT two bpaths Interference
I g P in en‘ergy or
N\NWE= ; T m T~ ™
7)) = m
I = emitted 2 detected
s st ! neutrino neutrino

® |ust as classic optical interferometry has led to new
precision, neutrino interferometry has potential to
be sensitive to new scales.

® e.g. Measure extremely small masses or interactions.
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d

i—vy = HRpvp

dx
L. Woltenstein: Oscillations need to be modified in presence of
matter.
Charged Current Neutral Current
for electron type only for all neutrino types

Additional potential for v, (7.): =v2GpN,

N, 1s electron number density.
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Oscillations in presence of matter

1
i"LL*’f = RoH (V) + Hmﬂf(yf}

dr

o p 1 2 2 - S ,
i — Ve = — | Ry T2 2 ’ 9 Ilé + 2E V26 Ne ! Ve
dx g 4F i) my — Mo 0 —v2G p Ne Ly

(3)

Looking at conversions of muon to electron neutrinos.

-2 _ 2

sin“ 2 o LAM* |/ I T,

P, ..= - — xsin? [ (a — cos 20)< 4 sin” 26
pL—e , . > .y \

(cos 260 — a)* + sin” 26 4F

a = 2v2EGEN./Am*

4
7610 x D/(gm/ec) x E,/CeV/(Am2/eV?)

This effect present if electron neutrinos in the mix
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2-neutrino picture

P (mu-e)  With matter 3 gm/cc
0.2} o

0.15;
n
0.1
| No matter
0.05;
w o \x  Energy
1 2 3 4 5 GeV

Osc. probability: 0.0025 eVA2, L= 2000 km, Theta=10deg
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So far.

® 3 types of neutrinos

® Still many unknowns about these particles, but
they play an important role in the early universe
as well as current astrophysical processes.

® |[f they have mass there are fundamental
consequences.

® |n next slides | will review the complete picture of
the 3 neutrinos: masses and mixing.
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Key new evidence

® Super KamiokaNDE (SK): observe
atmospheric neutrinos.

® Sudbury Neutrino Observatory (SNO):
observed solar neutrinos.

¢ KAMLAND reactor experiment

® MINOS accelerator beam experiment

Apologies to many other pioneering experiments
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SuperKamiokaNDE
50,000 tons of water
| 1000 photomultipliers
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Particle Identification

6 detected photons per MeV for fast particles
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Atmospheric neutrinos as a source for oscillation experiments
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SuperK result

| Preliminary

: Am?=2.4x10-2 sin%26=1.00
| 1*min=37.8/40 d.o.f
| (sin226=1.02, y2min=37.7/40 d.o.f)

99% C.L. @

— 90% C.L.
— 68% C.L.

0.8 0.9 1
sin“2e
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deep mine ~ 6000 mwe
olar nu < 14 MeV

L .-. P TR

_______
...........

.............
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Why does SNO use $300M worth of heavy water?

v, .

The Sun is known to

emit electron 1% /. p

neutrinos. Charged Current

| Gallium _ jChiorine e .

10 f.--"--- pb +1% Baheell-Pinsonneault 2004 1
1om ! !
- - £12%
= s ! 212X +2% 3
g !. "He Be ]
>t | 1
FE w 2K ,
w i
. os .'-""_—’ \
of [ Neutral Current
o i \
102 r" -. 1-0.1_1____. | \
10t ! __,._-"'----tep | !
; g : I
001 0.3 1 3 10

Neutrino Energy (MeV)
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Reactors are
prolific sources of

anti-neutrinos
~1029/GWqh/sec

V.+p—e +n
The detection reaction
is inverse beta decay.
The final state neutron
is also detected thru
absorption on
hydrogen.

Events/0.425MeV

Efficiency (%)

100 ;
80 - . ;“"J —+— Selection efficiency
L E ‘
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Fit to the entire Solar neutrino and Kamland data
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New Age of Accelerator

Neutrinos

For more precise experiments need pure
beams of muon type neutrinos (or anti-
neutrinos)

Better controlled characteristics: energy,
spectrum, backgrounds, pulsed.

High energy (>1| GeV) to provide events
with long muons. Better resolution.

Generally called Long Baseline Experiments.
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® Prepare a pure beam of
muon neutrino beam.

® Aim it towards a large
muon detector.

® Observe spectrum of
muon neutrinos to see
oscillations in energy.

Near Detector at NuMI
FERMILAB Illinois

A Wisconsin

10 km |
e Y
AA A
ki Neutrino beam diverges
- : -
eam-pipe 730 km
MINOS detector .

Soudan

Duluth - l‘*

Madison

.

Far Detector
SOUDAN MINE Minnesota

l .ill\l' \ u ')(‘l'i("-"’-.. /

Iron Mountains
—
7“0"%

=

Lk NINOS

™ detector

b,
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(Fermilab) Main Injector Neutrino Oscillation
MINOS) about to start running.
78

* 120 GeV protons
extracted from the MAIN

INJECTOR in a single
turn (8.7us)

MINOS Near Detector, /7 * 1.9 s cycle time

oA
N

* j.e. V beam on’ for 8.7us
every 1.9 s

_ * 2.5x1013 protons/pulse
= _?*“"E::"Efm * 0.3 MW on target!
* Initial intensity

2.5x102° protons/year

S FERMILAE WHB-TE50
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Absorber Muon Monitors

3 IR

Decay Pipe

\ larget Hall

i )
Horns" < z bt
10m 30m

675 m

® |20 GeV protons from Main Injector

® Parabolic magnetic horns to sign select pions.
Target can be moved to change beam energy.

® |0 psec pulses/2.2 sec, 3.3x10'3protons/pulse

® Beam: vy~ 91.7%, anti-Vy~7%, Ve~ 1.3%

Events / GeV / 10'® POT

® Vv, and anti-Vy measured. Ve constrained to
~10% with tuned Monte Carlo.

»-——“"r.__’
——-—"——’
—— il
| *M’—’
XM 2y sShe | {SS7 Ny
—-———"——1?" ~ —--—-..’

i

Rockl Rockl | Roek

Sm

I2m 18m 210m

MINOS Prellmmary

lllllllllllllllllllllll

MINOS Near Detector

i o High energy beam
g — Tuned MC

~10 15
Reconstructed neutrino energy (GeV)

« Low energy beam (x2)

20 30 50
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Ve

T

MINQOS Detectors

Y

'i:’ .}W’ - .MaSSive

| 3 *1 kt Near detector (small
J S fiducial)
[Nl 5.4 kt Far detector

& +Similar as possible

esteel planes
«2.5 cm thick

, \ | *1 Muon ~ 27 planes

*1.4 radiation lengths
escintillator strips

*1 cm thick

*4.1 cm wide

*Molier radius ~3.7 cm

*\Wavelength shifting fibre optic
readout

*Multi-anode PMTs

Magnetised (~1.3 T)




MINOS
near
detector
events

 lﬁAML~._ '{ '%

Run: 17995 Snarl: 672861 All 16 Slices

Reconstruction Surnmary
# Tracks: 12 % Showers: 4
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]
|
2
Ml d._ﬁﬂ.‘t—, ..... n: . -
Run: 17995 Snarl: 668997 All 17 Slices
| Reconstruction Summary
# Tracks: 15 # Showers: 10
: 2
|

33
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MINOS data

7.24x10%° POT neutrino running
< ———— e Oy

E T . 1.71x 10®° POT MINOS Vu running, Far Detector
- erd‘;)s F'a' UQIQCIOI . - L) T T L) I L) T T L) IlllIIllllll!l!l!"llllllllllllllll]l!l]_
- - 30 || -+MINOSdata -
- Fe ele C — - : 2 -
>300 i b= Far detector data { I — No oscillations ]
o - S - S --- AMP=2.32x10%eV?, sin®(26)=1]
) I Best oscillation fit | ® — Best oscillation fit 1
;200 n D NC background 7 g 20_— E"‘".___ [C]Background _—
E d c | Ak d

t q 5
2 + w [ i
100 + o 10 | | 1
0 - A 1 P | N N | N N i ;il :

0 2 4 6 8 10 gy s

5 10 20 30 40 50

Reconstructed neutrino energy (GeV) Reco. Energy (GeV)

Expect: 2451 Expect: |.56
Observe: 1986 Observe: 97

Newest update from last week
34
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Neutrinos and Antineutrinos

=232 x107 eV’

sin”(26,;)>0.90 (90% C.L.)

— MINOS ¥, 90% — MINOS v: 90%
6 -== MINOS ¥, 68% --= MINOS v, 68%
@ Bestv, Fit @ Bestv, Fit
1.71x 10 POT 7.24 x 10®° POT

-- - -
------
-~ -
-
-

TP, o T w0 T W I Y W O

~
"o
.- -
S e s csanan

5 06 07 08 09 1
sin’(20) and sin*(20)
Probability that parameters are identical is 2%

More data is being taken
35
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The Mixing Matrix

Atmospheric ] Cross-Mixing ) Solar

I T -0 T -

1 0 0 C13 0 $13€ C12 S12 0
U=|0 Cr3 §73 | X 0 1 0 X[=S1» C(pp 0
0 -553 3] [-s13¢° 0 c3 | [0 0 1
elal/Z O O

Cjj = €05 0; < 0 sl

S;; = sin 0;;
0 0 1
Majorana CF
~ ~ o ~ ~ o o
612 —~ 6801 —~ 34 ’ 623 —~ eatm —~ 37‘53 ° 613 <~1O

phases

0 would lead to P(v,—Vy) # P(v,—> V). CP

Since there are 3 neutrinos, there must be a 3X3 matrix
with 3 angles and | phase (observable) and 2 Am?

36
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One Global Fit;

Dominated by

parameter best fit 20 30

Am32, [1075¢V?] 7.6575-23 7.25-811 | 7.05-8.34 | KamLAND
Am2,| [1073eV?] | 2407912 | 218264 | 207275 | MINOS

sin? 01 030470922 | 097035 | 0.25-0.37 | SNO

sin? Oy 0.500%% | 0.39-0.63 | 0.36-0.67 | SuperK

sin? 6,5 0.01+9:916 < 0.040 <0.056 | Chooz

arXiv:0808.2016

Schwetz, Tortola,Valle

Not yet updated for newest results.

Friday, June 17, 2011



02 10¢
£ Solar KamILLAND E 0973% CL
018 05%CL. ~--=95%CL oF— e cdithend
et - 99% C L - 99% CL :
0.16 F- 99.73% CL. — 99.73% CL. gE
AR = O best-fit ® Dbest-fit -
0.14 = KamLAND+Solar (43
: Bl 5% CL 6F
=012 99% C L 3 ;
ey E Bl 99.73% CL. X sF
e O01p *  best-fit o e -
= : af 95%CL.
008 A
0.06 E 3 N%CL
: ~E
004 [~ 2E
002 |- N - 7 e
E . | “ee O: o o A J J NS 1:!"'\"1"["":‘1 2 l 1-4. .0 B
1 05 0% 04 06 07 08 09 1 0 001 002 003 004 005 0.06 0.07
tan’ 8,, sm'()13

FIG. 3. Allowed regions from the solar and Kaml AND data pro-

jected mn the (tan® 6,2, sin” #,3) plane for the three-flavor analysis.

FIG. 4. Ay“-profiles projected onto the sin® f,5 axis for different
combinations of the oscillation data floating the undisplayed param-

eters (tan® 0,2, Am3,).

® Solar and Reactor data has weak evidence for
the last mixing angle:Theta |3
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J-PARC produces 30 GeV

proton beam, design
power of 750 kW

AM? > 0

: MINOS
i — MINOS Best Fit B
_ i Ies%cCL .
& : [l 90% CL 7 .
g ~~CHOOZ90% CL 1 N ew ana I)’S IS

2sin®9,,=1 for CHOOZ

IS on way

2sin’(20,,)sin’,,

O3 Updates

First experiment purposely built for 613 measurement

3.23x10"7 POT

| V. observed

8 v, observed

have 4x data

Earthquake will

cause delays

for 8, = 0,sin*(26,,) = 1,
|Am3,| =243x 107 eV?

sin®(26,;) < 0.12 normal hierarchy

sin®(260,,) <0.20 inverted hierarchy
at 90% C.L.
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[] . . 2 Vel Vy Ve
@]

o] = COS 0 =
% sin” 63 cosé_l sin?6;, kinf;4 059 |
= 31 I o .
2 sin2 913 ! Arnzol »
Z Am?, | |
= ingyd
8 sin” 6y, kin64 )
= I T Amgy,
5 Amfo -1 .
2 1 1 | . sin’6y; |

Isinf4 -1 sin63 -1

NORMAL INVERTED
CPT = invariant 0 «» —9¢
Fractional Flavor Content varying cos 6
5 12 sin? @19 ~ 1/3
5msol — +7.6 x 107° eV 12
- 2
~ ° 2
ém?2 ,1/|om2, | ~ 0.03 sin® 013 < 3%

[6m2, = 0.05 eV < S my, < 0.5 eV =106 xm, 0<9 <27
parke
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Long Range Interactions

® Diversion to illustrate the power of
interferometry using the MINOS nu-antinu
discrepancy.

® VWhat could distinguish nu and antinu ?

® A new charge and very feeble interaction that
distinguishes flavor ?

® Davoudiasl, Lee, Marciano. Other work:
Joshipura, Mohanty(2003), others...
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® An ultra-light z boson and very feeble interaction.

® Must work over astronomical scales.

® Postulate a charge: Q = (B-L)+(Ly - Ly)

e- Proton | Neutron Vi Vt

Q -1 I I 0 -2

Potential due to neutrons in the Sun and Earth
Put M, = 1018 eV,

© Gy — / ."\”‘ﬁ‘ Ny’ = riE) 8 v—12 \V Q’l AL AU
Vii—o (72"—+R£_:,) —2.24 x 1012 o\ (w—_rﬁ) [u.zs + (m—s)}

N® =1.70 x 1056 and N® = 1.78 x 1051,

n

R = 6.4 x 10° km Phenomenology is
Rg. ~ 1.52 x 108 km, aphelion (~ July 4) same as MSW

RE. ~ 1.47 x 10® km, perihelion (~ January 4).
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10

08}
06f

P,u,u

04}

02}

o "0 15 20 30 50 70 100 10 1520 30 50 70 100

E, (GeV) E, (GeV)
(a) (b)

Above: SM (black dotted), LRI (red solid) with Am3, =2.45 x 10™* eV and o' = 0.5 x 10 52 (a)
L. = 2 x 6400 km (DEEPCORE experiment) with sin“(2022) = 1. (b) L. = 1300 km (DUSEL) with

sin“(2623) = 0.92. v: red solid, v: dashed orange. Below: o/ = 1.0 x 10732

1.0 o

dal 03} :
_06 : _ 06}
S . 04}

0.2 Oli,'; /

s “10 15 2 30 50 70 10 = 10 1520 30 50 70 100

E, (GeV) E, (GeV)
Limit on &’ is already <5 x 10->2 from rough fit current

MINOS data. Weaker than gravity ! Neutrinos may be
the only window on such interactions.
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Must see full consequence of
oscillations

Oscillation Nodes for Am® = 0.0025 eV*
? L

® Must see multiple nodes in a

=)
. L
spectrum for precise < o [ X o
= < <
measurements o ”
® NeedE: I-6 GeV S S
4 - w2 %
S =
® Need ~2000 km 2 | o o
® Need intense beam. -
* /2t |
: / 5n/2
® Need very large (200kTon) 1f puatill PN

detector to get enough events
0O 500 1000 1500 2000 2500 3000

Baseline (km)
® Must place detector

underground (M. Diwan, hep-ex/0407047)
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v, — Ve with matter effect

Approximate formula (M. Freund) matter effect -E

2 s - k
sin“ 2613 . | 7500 X
5 sin®((A—1)A) 10 CPV.

Plv, —ve) = sin® @oq

(A= 4~ magic bln

&f{_:p . o - - P

# + __1(1 T sin(A)sin(AA) sin((1 — A)A)
CPV term AT A

zzlpproxciimate +ﬂﬁflfcii) cos(A) sin(AA) sin((1 — A)A)

ependence -
-L/E 5082 flog sin® 2012 . o, «
Ta 2 sin“(AA) solar term

47 linear dep.

Jop = 1/8sin g p cos #15 sin 2019 sin 2013 sin 2094

Iep = 1/8cosdep cos g sin 2049 sin 26014 sin 2693

a = Am2, /Am2,, A = Am2, L/AE CP asymmetry grows as
th13 becomes smaller

A =2VE/Am2, =~ (E,/GeV)/11 For Earth’s crust.
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Technology for the new experiment

e An experimental project of this kind needs and affects
technical development in many fields.

e Material science: a high intensity/radiation target must

be developed.

e (Glass/ceramics: Photomultiplier tubes that can
withstand ultrapure water at high pressure must be

developed.
e Biology: need to keep water clean !
e Understanding cryogenics on a large scale underground

e Underground construction: Deep stable caverns in
hard rock. The scales needed are new for engineering.

e Accelerator science: new very high intensity beams.
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The Neutrino Beam Facility at Fermilab

Start with a 700 kW beam, and then take profit of the significantly
o increased beam power (2.3 MW) ava

R

» Allow NUMI/MINERVA/NOVA
running with LBNE

» Maximize distance between
target and Near Detector (now 603 m
to upstream end)

» Need a wide band beam to
cover 15! and 2™ osc. maxima

. .
EXTRACTION',
ENCLOSURE"

NEAR & | / 4
DETECTOR F o TRSEREEE 48 degree hor. beng

FACILITIES -
to point to SD

TUNNEL

ges™ N ABSORBER
o\aec‘ FACILITIES

~250 ft underground

Primm.“_\' beam energy (protons from the Main Injector) from 60 to 120 GeV
Design is becoming quite detailed and documented
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New above ground
design at FNAL
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Fig. 1: LBNE neutrino beam configuration for extraction at MI-10 and the target hall above grade
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Progress on the Homestake site

e A large NSF funded team is in place

= ,_vy»,x%gh;g:%“ at Berkeley and SD. Goal is to
R hi f i
A | achieve 2013 start for construction
| (MREFCO).
- e Surface campus assessment
complete.

e Underground infrastructure
assessment and basis of est.
complete

e (Geotechnical assessment complete
with boreholes and rock studies.

e Many consulting companies onboard.

e Jarge Cavity Advisory Board has
reported very positively.
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Water Cherekov Detector: 2 modules of
100 kton each with ~50000 PMTs each

Utilities/Entrance drift at 4850L

Cable

Mucking Drift at 5060L

Rather detailed simulation exists due to
simulation group led by C.Walter and lon Stancu

Friday, June 17, 2011
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New underground plan: single 200 kTon detector

29000 12 inch tubes

Installed on steel
cables
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Liquid argon detector

» Agreed on a preferred design

Reference Design3a — membrane cryostat with cold electronics
Located on the 800 level

Cosmic ray veto

Agreed on 3mm wire spacing

Agreed on three wire planes + | un-instrumented grid plane

Details given in Reference Design talk

Baller
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Cryostat end cut open to show frame assembly
. _— 800 ft depth with
T 2 | an active veto shield.
Simulation and
performance based
on Argoneut

Cryostataccess
hatch,

plugged when
cryostatis filled

™
. Existing 800 Yates Shaft —

Level

Wire and Cathode
frames are transported
in halveswhich are
joinedin cryostat

v

- Kirk Portal

Ramp From
300L to 800L

a2 R o - I Existing 300
50cm °: iy i : ! "4 Level

= Utility Shafts
To Surface

LArTPC Cavern 2

LArTPC Cavern 1

Ross Shaft
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Sensitivity summary
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Summary

® Discovery of oscillations and neutrino mass has
opened a new field for measurement.

® The current focus is on full understanding of the
quantum mechanical mixing phenomena which
takes place on a very large scale and huge
dynamic ranges.

® A new program of experiments is in discussion
and design. |t requires detectors that are order of
magnitude bigger and beam intensities that are
much higher.
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